WD 8 - 3000 - 126/19 (26.09.2019) © 2019 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines seiner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasserinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeitpunkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abgeordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, geschützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fachbereich berät über die dabei zu berücksichtigenden Fragen. 1. C3- und C4-Pflanzen „C3-Pflanzen betreiben unter normalen Temperatur- und Lichtverhältnissen Photosynthese. Bei heißem und trockenem Wetter schließen sich die Spaltöffnungen, wodurch die Photosyntheseleistung sinkt. Bei normalen Temperatur- und Lichtverhältnissen ist der Grundtypus der Photosynthese, der in den sogenannten C3-Pflanzen stattfindet, am effektivsten. Bei heißem und trockenem Wetter schließen sich jedoch die Spaltöffnungen. Dann sind C4- bzw. CAM-Pflanzen im Vorteil. Bei C3-Pflanzen wird CO2 im Calvin-Zyklus bei der RuBisCO-Reaktion an Ribulose-1,5-bisphosphat fixiert. Dabei entsteht eine instabile Zwischenstufe, die in zwei stabile Moleküle 3-Phosphoglycerat (3-PGA) zerfällt. 3-PGA ist aus drei Kohlenstoffatomen aufgebaut, daher der Name C3- Pflanzen. 3-PGA wird im Calvin-Zyklus weiter umgesetzt. Der überwiegende Teil höherer Pflanzen gehört zu den C3-Pflanzen. Um sich an Standort- bzw. Klimabedingungen optimal anzupassen, haben sich zudem besondere Formen der CO2-Fixierung entwickelt (C4- und CAM-Pflanzen).“ BMBF (2019). C3-Pflanzen. https://www.pflanzenforschung.de/index.php?cID=7812 „C4-Pflanzen binden CO2 besser als C3-Pflanzen. Sie haben sich an wärmere Regionen mit höherer Lichteinstrahlung, also tropisches und subtropisches Klima angepasst. Normalerweise schließen Pflanzen bei hoher Umgebungstemperatur ihre Stomata, um Wasserverluste durch Transpiration in Grenzen zu halten. Dadurch wird allerdings die Aufnahme von CO2 für die Photosynthese erschwert. C4-Pflanzen haben daher einen Mechanismus entwickelt, um selbst geringste Mengen CO2 nutzen zu können. Im Gegensatz zu C3-Pflanzen besteht das erste Zwischenprodukt der Photosynthese bei C4-Pflanzen – Oxalacetat - aus vier Kohlenstoff-Atomen. Mithilfe des Enzyms PEP-Carboxylase wird CO2 besonders effektiv gebunden. Wissenschaftliche Dienste Kurzinformation Einzelfragen zur Photosynthese von C3- und C4-Pflanzen Kurzinformation Einzelfragen zur Photosynthese von C3- und C4- Pflanzen Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung) Wissenschaftliche Dienste Seite 2 C4-Pflanzen können bei hoher Lichteinstrahlung und hoher Temperatur in kürzerer Zeit mehr Biomasse aufbauen als C3-Pflanzen. Entsprechend sind C4-Pflanzen vorwiegend an trockenen Standorten zu finden. Vor allem Gräser und Nutzpflanzen, wie Amarant, Hirse, Mais und Zuckerrohr nutzen die C4-Photosynthese.“ BMBF (2019). C4-Pflanzen. https://www.pflanzenforschung.de/index.php?cID=7812 2. Vorkommen der C4-Photosynthese im Pflanzenreich „Nur etwa drei Prozent der heute lebenden Gefäßpflanzen betreiben C4-Photosynthese. Da diese jedoch so effizient ist, machen sie ungefähr 25 Prozent der gesamten, auf dem Land betriebenen Photosyntheseleistung aus. Bekannte C4-Pflanzen sind Mais, Zuckerrohr, Amarant, Hirse und Chinaschilf. Die meisten gehören zu den Gräsern, gefolgt von Seggen. Doch auch bei einer Reihe von Zweikeimblättrigen gibt es diesen Stoffwechselweg, insbesondere bei den Fuchsschwanzgewächsen und anderen Nelkenartigen, bei Wolfsmilchgewächsen und vereinzelt bei Windengewächsen und Korbblütlern. C4-Pflanzen wachsen schneller als C3-Pflanzen, bilden also in kürzerer Zeit mehr Biomasse, was ihren landwirtschaftlichen Nutzen gegenüber anderen Pflanzen erhöht . Die C4-Photosynthese ist aus evolutionsbiologischer Sicht der jüngere und modernere Photosynthesetyp . Die C3-Photosynthese gibt es schon seit über zwei Milliarden Jahren. Die C4-Photosynthese hat sich erst vor 30 Millionen Jahren entwickelt. (…) Das Enzym Ribulose-1,5-bisphosphat-carboxylase/oxygenase (RuBisCO) ist dafür verantwortlich, dass alle photosynthetisch aktiven Pflanzen Kohlenstoffdioxid aufnehmen können, weshalb es vermutlich das mengenmäßig häufigste wasserlösliche Protein der Erde ist. C4-Pflanzen können mit viel weniger RuBisCO genau so viel Kohlenstoff aus der Luft fixieren wie C3-Pflanzen. So bleibt ihnen mehr Energie zum Wachsen.“ BMBF (2013). Die Evolution von C4-Pflanzen vorhersagen. Kann man C3-Pflanzen in C4-Pflanzen umzüchten? https://www.pflanzenforschung.de/de/journal/journalbeitrage/die-evolution-von-c4- pflanzen-vorhersagen-kann-man-c3-p-10069 C4-Pflanzen sind bei Wasserknappheit, hohen Temperaturen und Sonneneinstrahlung C3-Pflanzen in ariden Klimazonen überlegen. So betreiben etwa 70 Prozent aller im Death-Valley-Nationalpark lebenden Arten eine C4-Photosynthese. Der Großteil aller C4-Gräser wächst in Regionen mit weniger als 30 Grad geographischer Breite. Seltener sind sie in kalten Regionen zu finden, wie z. B. in der borealen Zone zwischen dem 50. und 65. Breitengrad und in großen Höhenlagen. Es gibt einige kältetolerante C4-Pflanzen, die Frost sowie winterliche Temperaturen (−20 °C) überstehen können, beispielsweise C4-Gräser in den Anden. Vergleiche dazu: Rowan F. Sage, Ferit Kocacinar, David S. Kubien: C4 photosynthesis and temperature . In: Raghavendra, Sage (Hrsg.): C4 photosynthesis and related CO2 concentrating mechanisms . 2011, S. 161–195. Kurzinformation Einzelfragen zur Photosynthese von C3- und C4- Pflanzen Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung) Wissenschaftliche Dienste Seite 3 Unklar ist, warum es - bis auf ein paar wenige Ausnahmen - keine Bäume mit einer C4-Photosynthese existieren. Rowan F. Sage schreibt dazu in einem Aufsatz aus dem Jahr 2017: "For reasons that are not fully understood, the C4 pathway is absent in trees, with the exception of a few rare species in Hawaii." Auf Hawaii existieren demnach nur vier Arten, darunter Euphorbia olowaluana (bis 10 m) und E. herbstii (bis 8 m). Euphorbia olowaluana wächst in trockenen Wäldern auf Hawaii, bildet aber kein dichtes Blätterdach. E. herbstii wächst größtenteils als Baum im Unterholz anderer Bäume und verfügt über eine ausgezeichnete Schattentoleranz. Vergleiche dazu: Rowan F. Sage: A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. In: Journal of Experimental Botany. Band 68, Nr. 2, 2017, S. e12–e13, https://academic.oup.com/jxb/article /68/2/e11/2932223 ) ***